专栏文章

已完成今日 A+B Problem 大学习

个人记录参与者 1已保存评论 0

文章操作

快速查看文章及其快照的属性,并进行相关操作。

当前评论
0 条
当前快照
1 份
快照标识符
@mjzmyn4p
此快照首次捕获于
2026/01/04 19:15
2 个月前
此快照最后确认于
2026/01/04 19:15
2 个月前
查看原文
内容来自 Missile

题目描述

给定两个整数 a,ba, b,求下列式子的值。
S(κ=11Gκλ=12Hλ)×μM[limν(ξ=1ωJξ,μ)](πΠKπ)(ρ=1dLρ)×exp[n=1(1)n(n+1)/2n!Γnk=1n(ζ(sk)Γ(sk)Lisk(e2πi/k))m=1n(sm2+1sm3)pm(spsm)ds1dsn]×Tr(r=11000[D11(r)D12(r)D1r(r)D21(r)D22(r)D2r(r)Dr1(r)Dr2(r)Drr(r)]r)×p primep1 (mod 4)(1+1p2+1p4++1p2log2p)+limϵ0+δ0η100α1α100[R100eik,xJ1(k)Y2(k)K3(k)I4(k)k100+ϵk98+δk96+ηk94+1d100k]×n1,n2,,n50=0Γ(n1+n2++n50+1)n1!n2!n50!ζ(2n1+3n2+5n3++229n50+1)×(=1{zC:j=1zjj<e})(d=1{wHd:w2=ζ(2d)})+1(2πi)100z1=R1z100=R100j=1100(sin(zj)cos(zj1)tan(ezj)cot(ln(1+zj)))1j<k100(zjzk)m=1100(zm1000+zm500+1)dz1dz100×dimQ(n=1Q(2n)Q(ζn))×rank(p primeZp)+Mg,n(i=1nψiki)×exp(h=0m=0λhκmh!m!)×det(2Ftitj)i,j=11000+L{tα1Eβ,γ(ωtδ)}(s)×F{et2Hn(t)}(ω)×Z{11qs}(t)H{dndtn(tμeλt)}(s)×M{f(t)ts1}(z)+σS1000sgn(σ)j=11000(01xσ(j)1+xσ(j)2dx)×χirr(σ)×dimVσ+R3×(rr3)dS×ΩFdr×ΣGdA×[t(2ux2+2uy2+2uz2)+(uu)+1c22ut2]u=ei(kxωt)+Ress=1ζ(s)×Resz=0Γ(z)×Resw=Lis(w)×singularities(11zν)+dimCH0(X,O(D))dimCH1(X,O(D))+dimCH2(X,O(D))+1#GgGχ(g)×1Vol(M)MRic(g)dVg×i=1n(11pisi)1+P(n=1m=nAm)×E[eitX]×Cov(X,Y)×Corr(Z,W)+ddtψH^ψ×Tr(eβH^)×n=1(1+eβϵn)+D[ϕ]eS[ϕ]O[ϕ]×det(δ2Sδϕδϕ)1/2×exp(12ϕΔ1ϕ)+diagrams(iλ)nn!d4x1d4xn0T(ϕ(x1)ϕ(xn))0+Index(D)\begin{aligned}\displaystyle &\mathfrak{S}\left( \bigoplus_{\kappa=1}^{\aleph_1} \mathfrak{G}_{\kappa} \otimes \bigwedge_{\lambda=1}^{\beth_2} \mathfrak{H}_{\lambda} \right) \times \coprod_{\mu \in \mathfrak{M}} \left[ \varprojlim_{\nu \to \infty} \left( \bigsqcup_{\xi=1}^{\beth_\omega} \mathfrak{J}_{\xi,\mu} \right) \right] \oplus \left( \bigvee_{\pi \in \Pi} \mathfrak{K}_\pi \right) \otimes \left( \bigcap_{\rho=1}^{\mathfrak{d}} \mathfrak{L}_\rho \right) \\ &\times \exp\left[ \sum_{n=1}^{\infty} \dfrac{(-1)^{n(n+1)/2}}{n!} \oint_{\Gamma_n} \dfrac{ \prod_{k=1}^n \left( \zeta(s_k) \Gamma(s_k) \text{Li}_{s_k}(e^{2\pi i/k}) \right) }{ \sum_{m=1}^n \left( s_m^2 + \dfrac{1}{s_m^3} \right) \prod_{p \neq m} (s_p - s_m) } ds_1 \cdots ds_n \right] \\ &\times \text{Tr}\left( \bigoplus_{r=1}^{1000} \begin{bmatrix} \mathscr{D}^{(r)}_{11} & \mathscr{D}^{(r)}_{12} & \cdots & \mathscr{D}^{(r)}_{1r} \\ \mathscr{D}^{(r)}_{21} & \mathscr{D}^{(r)}_{22} & \cdots & \mathscr{D}^{(r)}_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ \mathscr{D}^{(r)}_{r1} & \mathscr{D}^{(r)}_{r2} & \cdots & \mathscr{D}^{(r)}_{rr} \end{bmatrix}^{\otimes r} \right) \times \prod_{\substack{p \text{ prime} \\ p \equiv 1 \ (\text{mod } 4)}} \left( 1 + \dfrac{1}{p^2} + \dfrac{1}{p^4} + \cdots + \dfrac{1}{p^{2\lfloor \log_2 p \rfloor}} \right) \\ &+ \lim_{\substack{\epsilon \to 0^+ \\ \delta \to 0^- \\ \eta \to \infty}} \dfrac{ \partial^{100}}{\partial \alpha_1 \cdots \partial \alpha_{100}} \left[ \int_{\mathbb{R}^{100}} e^{i\langle \mathbf{k}, \mathbf{x} \rangle} \dfrac{ J_1(\|\mathbf{k}\|) Y_2(\|\mathbf{k}\|) K_3(\|\mathbf{k}\|) I_4(\|\mathbf{k}\|) }{ \|\mathbf{k}\|^{100} + \epsilon \|\mathbf{k}\|^{98} + \delta \|\mathbf{k}\|^{96} + \eta \|\mathbf{k}\|^{94} + 1 } d^{100}\mathbf{k} \right] \\ &\quad \times \sum_{n_1,n_2,\ldots,n_{50}=0}^\infty \dfrac{ \Gamma(n_1+n_2+\cdots+n_{50}+1) }{ n_1!n_2!\cdots n_{50}! \cdot \zeta(2n_1+3n_2+5n_3+\cdots+229n_{50}+1) } \\ &\times \left( \bigcap_{\ell=1}^{\infty} \left\{ \mathbf{z} \in \mathbb{C}^\ell : \left| \sum_{j=1}^\ell z_j^j \right| < e^{-\ell} \right\} \right) \cup \left( \bigcup_{d=1}^\infty \left\{ \mathbf{w} \in \mathbb{H}^d : \|\mathbf{w}\|^2 = \zeta(2d) \right\} \right) \\ &+ \dfrac{1}{(2\pi i)^{100}} \oint_{|z_1|=R_1} \cdots \oint_{|z_{100}|=R_{100}} \dfrac{ \prod_{j=1}^{100} \left( \sin(z_j) \cos(z_j^{-1}) \tan(e^{z_j}) \cot(\ln(1+z_j)) \right) }{ \prod_{1 \leq j < k \leq 100} (z_j - z_k) \cdot \prod_{m=1}^{100} (z_m^{1000} + z_m^{500} + 1) } dz_1 \cdots dz_{100} \\ &\times \dim_{\mathbb{Q}} \left( \bigoplus_{n=1}^\infty \mathbb{Q}(\sqrt[n]{2}) \otimes \mathbb{Q}(\zeta_n) \right) \times \text{rank} \left( \bigotimes_{p \text{ prime}} \mathbb{Z}_p \right) \\ &+ \int_{\mathscr{M}_{g,n}} \left( \prod_{i=1}^n \psi_i^{k_i} \right) \times \exp\left( \sum_{h=0}^\infty \sum_{m=0}^\infty \dfrac{\lambda_h \kappa_m}{h!m!} \right) \times \det\left( \dfrac{\partial^2 \mathscr{F}}{\partial t_i \partial t_j} \right)_{i,j=1}^{1000} \\ &+ \dfrac{ \mathscr{L}\left\{ t^{\alpha-1} E_{\beta,\gamma}(\omega t^\delta) \right\}(s) \times \mathscr{F}\left\{ e^{-t^2} H_n(t) \right\}(\omega) \times \mathscr{Z}\left\{ \dfrac{1}{1-q^s} \right\}(t) }{ \mathscr{H}\left\{ \dfrac{d^n}{dt^n} \left( t^\mu e^{-\lambda t} \right) \right\}(s) \times \mathscr{M}\left\{ f(t) t^{s-1} \right\}(z) } \\ &+ \sum_{\sigma \in S_{1000}} \text{sgn}(\sigma) \prod_{j=1}^{1000} \left( \int_0^1 \dfrac{x^{\sigma(j)}}{1+x^{\sigma(j)^2}} dx \right) \times \chi_{\text{irr}}(\sigma) \times \dim V_\sigma \\ &\quad + \iiint\limits_{\mathbb{R}^{3}} \nabla \times \left( \dfrac{\mathbf{r}}{r^3} \right) \cdot d\mathbf{S} \times \oint_{\partial \Omega} \mathbf{F} \cdot d\mathbf{r} \times \iint_{\Sigma} \mathbf{G} \cdot d\mathbf{A} \\ &\times \left[ \dfrac{\partial}{\partial t} \left( \dfrac{\partial^2 u}{\partial x^2} + \dfrac{\partial^2 u}{\partial y^2} + \dfrac{\partial^2 u}{\partial z^2} \right) + \nabla \cdot (u \nabla u) + \dfrac{1}{c^2} \dfrac{\partial^2 u}{\partial t^2} \right]_{u=e^{i(kx-\omega t)}} \\ &+ \text{Res}_{s=1} \zeta(s) \times \text{Res}_{z=0} \Gamma(z) \times \text{Res}_{w=\infty} \text{Li}_s(w) \times \prod_{\text{singularities}} \left( 1 - \dfrac{1}{z_\nu} \right) \\ &+ \dim_{\mathbb{C}} H^0(X, \mathscr{O}(D)) - \dim_{\mathbb{C}} H^1(X, \mathscr{O}(D)) + \dim_{\mathbb{C}} H^2(X, \mathscr{O}(D)) - \cdots \\ &+ \dfrac{1}{\# G} \sum_{g \in G} \chi(g) \times \dfrac{1}{\text{Vol}(M)} \int_M \text{Ric}(g) dV_g \times \prod_{i=1}^n \left( 1 - \dfrac{1}{p_i^{s_i}} \right)^{-1} \\ &+ \mathscr{P}\left( \bigcap_{n=1}^\infty \bigcup_{m=n}^\infty A_m \right) \times \mathbb{E}\left[ e^{itX} \right] \times \text{Cov}(X,Y) \times \text{Corr}(Z,W) \\ &+ \dfrac{d}{dt} \left\langle \psi \left| \hat{H} \right| \psi \right\rangle \times \text{Tr} \left( e^{-\beta \hat{H}} \right) \times \prod_{n=1}^\infty \left( 1 + e^{-\beta \epsilon_n} \right) \\ &+ \int \mathscr{D}[\phi] e^{-S[\phi]} \mathcal{O}[\phi] \times \det\left( \dfrac{\delta^2 S}{\delta \phi \delta \phi} \right)^{-1/2} \times \exp\left( -\dfrac{1}{2} \phi \cdot \Delta^{-1} \cdot \phi \right) \\ &+ \sum_{\text{diagrams}} \dfrac{(-i\lambda)^n}{n!} \int d^4x_1 \cdots d^4x_n \langle 0 | T \left( \phi(x_1) \cdots \phi(x_n) \right) | 0 \rangle + \text{Index}(D) \end{aligned}

输入格式

一行两个整数 a,ba, b

输出格式

一行一个整数,表示上述式子的值。

样例输入

CPP
114514 1919810

样例输出

CPP
2034324

数据范围限制

对于 100%100\% 的数据,a,ba, b 满足
δ(0,10200), α,βQ(0,1), γ,σZ3,使得 k,lN, m,nZ, fC(R4),{1. 对 a: 拓扑空间 (Xa,τa) 是紧的,其中 Xa={(x1,x2,x3,x4)R4i=14xi2(a109+δ)2}, τa为欧氏拓扑;对 b: 拓扑空间 (Xb,τb) 是紧的,其中 Xb={(y1,y2,y3,y4)R4i=14yi2(b109+δ)2}, τb为欧氏拓扑;2. 对 a: 群同态 ϕa:ZγSa+109 存在且非平凡;对 b: 群同态 ϕb:ZσSb+109 存在且非平凡,其中 Snn元对称群;3. 对 a: 复函数 ga(z)=n=0(za109)nΓ(n+α)ζ(n+3)βn 在 D(0,2)C 内解析; b: 复函数 gb(z)=n=0(zb109)nΓ(n+β)ζ(n+3)αn 在 D(0,2)C 内解析;4. 对 a: 线性算子 Ta:L2(R)L2(R),Taf(x)=a109Rext2f(t)dt 的范数 Ta1;对 b: 线性算子 Tb:L2(R)L2(R),Tbf(x)=b109Rext2f(t)dt 的范数 Tb1;5. 对 a: 同余式 (a3+10271027+m)0modγ对所有 mZ 成立;对 b: 同余式 (b3+10271027+n)0modσ对所有 nZ 成立;6. 对 a: 级数 n=1(1)nsin(na109)cos(na+1)n3+n!γn绝对收敛且和小于 δ;对 b: 级数 n=1(1)nsin(nb109)cos(nb+1)n3+n!σn绝对收敛且和小于 δ;7. 对 a: 分形集 Fa={n=1sign(a)χ[a,a](n)109nαnnN}的 Hausdorff 维度 dimH(Fa)0.5;对 b: 分形集 Fb={n=1sign(b)χ[b,b](n)109nβnnN}的 Hausdorff 维度 dimH(Fb)0.5;8. 对 a: 多重积分 [0,1]k[0,1]kmax((a109)3(x1y1++xkyk),0)dx1dxkdy1dyk<δ;对 b: 多重积分 [0,1]l[0,1]lmax((b109)3(x1y1++xlyl),0)dx1dxldy1dyl<δ\begin{aligned} &\forall \delta \in \left(0, 10^{-200}\right),\ \exists \alpha, \beta \in \mathbb{Q} \cap (0,1),\ \exists \gamma, \sigma \in \mathbb{Z}_{\geq 3}, \\ &\text{使得}\ \forall k, l \in \mathbb{N},\ \forall m, n \in \mathbb{Z},\ \forall f \in C^\infty\left(\mathbb{R}^4\right), \\ &\begin{cases} \text{1. 对}\ a:\ \text{拓扑空间}\ (X_a, \tau_a)\ \text{是紧的}, \\\displaystyle \quad \text{其中}\ X_a = \left\{ (x_1,x_2,x_3,x_4) \in \mathbb{R}^4 \mid \sum_{i=1}^4 x_i^2 \leq \left( \dfrac{|a|}{10^9} + \delta \right)^2 \right\},\ \tau_a \text{为欧氏拓扑}; \\ \quad \text{对}\ b:\ \text{拓扑空间}\ (X_b, \tau_b)\ \text{是紧的}, \\\displaystyle \quad \text{其中}\ X_b = \left\{ (y_1,y_2,y_3,y_4) \in \mathbb{R}^4 \mid \sum_{i=1}^4 y_i^2 \leq \left( \dfrac{|b|}{10^9} + \delta \right)^2 \right\},\ \tau_b \text{为欧氏拓扑}; \\ \\ \text{2. 对}\ a:\displaystyle\ \text{群同态}\ \phi_a: \mathbb{Z}^\gamma \to S_{\lfloor |a| + 10^9 \rfloor}\ \text{存在且非平凡}; \\ \quad \text{对}\ b:\ \text{群同态}\ \phi_b: \mathbb{Z}^\sigma \to S_{\lfloor |b| + 10^9 \rfloor}\ \text{存在且非平凡}, \\ \quad \text{其中}\ S_n \text{为}n\text{元对称群}; \\ \\ \text{3. 对}\displaystyle\ a:\ \text{复函数}\ g_a(z) = \sum_{n=0}^\infty \dfrac{\left( z - \dfrac{a}{10^9} \right)^n}{\Gamma(n + \alpha) \cdot \zeta(n + 3) \cdot \beta^n}\ \text{在}\ \mathbb{D}(0,2) \subseteq \mathbb{C}\ \text{内解析}; \\ \quad \text{对}\displaystyle\ b:\ \text{复函数}\ g_b(z) = \sum_{n=0}^\infty \dfrac{\left( z - \dfrac{b}{10^9} \right)^n}{\Gamma(n + \beta) \cdot \zeta(n + 3) \cdot \alpha^n}\ \text{在}\ \mathbb{D}(0,2) \subseteq \mathbb{C}\ \text{内解析}; \\ \\ \text{4. 对}\ a:\displaystyle\ \text{线性算子}\ T_a: L^2(\mathbb{R}) \to L^2(\mathbb{R}), \\ \quad T_a f(x) = \dfrac{a}{10^9} \cdot \int_{\mathbb{R}} e^{-|x - t|^2} f(t) dt\ \text{的范数}\ \| T_a \| \leq 1; \\ \quad \text{对}\ b:\displaystyle\ \text{线性算子}\ T_b: L^2(\mathbb{R}) \to L^2(\mathbb{R}), \\ \quad T_b f(x) = \dfrac{b}{10^9} \cdot \int_{\mathbb{R}} e^{-|x - t|^2} f(t) dt\ \text{的范数}\ \| T_b \| \leq 1; \\ \\ \text{5. 对}\displaystyle\ a:\ \text{同余式}\ \left( \left\lfloor \dfrac{|a|^3 + 10^{27}}{10^{27}} \right\rfloor + m \right) \equiv 0 \mod \gamma \\ \quad \text{对所有}\ m \in \mathbb{Z}\ \text{成立}; \\ \quad \text{对}\ b:\displaystyle\ \text{同余式}\ \left( \left\lfloor \dfrac{|b|^3 + 10^{27}}{10^{27}} \right\rfloor + n \right) \equiv 0 \mod \sigma \\ \quad \text{对所有}\ n \in \mathbb{Z}\ \text{成立}; \\ \\ \text{6. 对}\ a:\displaystyle\ \text{级数}\ \sum_{n=1}^\infty \dfrac{(-1)^n \cdot \sin\left( \dfrac{n a}{10^9} \right) \cdot \cos\left( \dfrac{n}{|a| + 1} \right)}{n^3 + \lfloor \sqrt{n} \rfloor! \cdot \gamma^n} \\ \quad \text{绝对收敛且和小于}\ \delta; \\ \quad \text{对}\ b:\displaystyle\ \text{级数}\ \sum_{n=1}^\infty \dfrac{(-1)^n \cdot \sin\left( \dfrac{n b}{10^9} \right) \cdot \cos\left( \dfrac{n}{|b| + 1} \right)}{n^3 + \lfloor \sqrt{n} \rfloor! \cdot \sigma^n} \\ \quad \text{绝对收敛且和小于}\ \delta; \\ \\ \text{7. 对}\ a:\displaystyle\ \text{分形集}\ F_a = \left\{ \sum_{n=1}^\infty \dfrac{\text{sign}(a) \cdot \chi_{[-\vert a \vert, \vert a \vert]}(n)}{10^{9n} \cdot \alpha^n} \mid n \in \mathbb{N} \right\} \\ \quad \text{的 Hausdorff 维度}\ \dim_H(F_a) \leq 0.5; \\ \quad \text{对}\ b:\displaystyle\ \text{分形集}\ F_b = \left\{ \sum_{n=1}^\infty \dfrac{\text{sign}(b) \cdot \chi_{[-\vert b \vert, \vert b \vert]}(n)}{10^{9n} \cdot \beta^n} \mid n \in \mathbb{N} \right\} \\ \quad \text{的 Hausdorff 维度}\ \dim_H(F_b) \leq 0.5; \\ \\ \text{8. 对}\ a:\displaystyle\ \text{多重积分}\ \int_{[0,1]^k} \int_{[0,1]^k} \max\left( \left( \dfrac{a}{10^9} \right)^3 - (x_1 y_1 + \cdots + x_k y_k), 0 \right) \\ \quad dx_1 \cdots dx_k dy_1 \cdots dy_k < \delta; \\ \quad \text{对}\ b:\displaystyle\ \text{多重积分}\ \int_{[0,1]^l} \int_{[0,1]^l} \max\left( \left( \dfrac{b}{10^9} \right)^3 - (x_1 y_1 + \cdots + x_l y_l), 0 \right) \\ \quad dx_1 \cdots dx_l dy_1 \cdots dy_l < \delta \end{cases} \end{aligned}

评论

0 条评论,欢迎与作者交流。

正在加载评论...