首页
A
vlnknihl
当前主题:自动模式
查看保存队列
搜索
专栏文章
伯努利数
T
T0mle
2025/11/17 15:41
个人记录
参与者 1
已保存评论 0
文章操作
快速查看文章及其快照的属性,并进行相关操作。
当前评论
0 条
当前快照
1 份
快照标识符
@min6c1qf
此快照首次捕获于
2025/12/01 21:17
3 个月前
此快照最后确认于
2025/12/01 21:17
3 个月前
查看原文
时光机
更新文章
复制链接
复制快照链接
复制正文 Markdown
自然数幂和
S
m
(
n
)
=
∑
i
=
0
n
−
1
i
m
S_m(n)=\sum_{i=0}^{n-1}i^m
S
m
(
n
)
=
∑
i
=
0
n
−
1
i
m
伯努利数
伯努利数常用于计算自然数幂和。
伯努利数第
i
i
i
项记作
B
i
B_i
B
i
,满足:
∑
i
=
0
n
(
n
+
1
i
)
B
i
=
[
n
=
0
]
\sum_{i=0}^n\binom{n+1}iB_i=[n=0]
i
=
0
∑
n
(
i
n
+
1
)
B
i
=
[
n
=
0
]
两边加上
B
i
+
1
B_{i+1}
B
i
+
1
,即
∑
i
=
0
n
+
1
(
n
+
1
i
)
B
i
=
[
n
=
0
]
+
B
n
+
1
∑
i
=
0
n
(
n
i
)
B
i
=
[
n
=
1
]
+
B
n
∑
i
=
0
n
B
i
i
!
⋅
1
(
n
−
i
)
!
=
[
n
=
1
]
+
B
n
n
!
\sum_{i=0}^{n+1}\binom{n+1}iB_i=[n=0]+B_{n+1}\\ \sum_{i=0}^n\binom niB_i=[n=1]+B_n\\ \sum_{i=0}^n\frac{B_i}{i!}\cdot\frac1{(n-i)!}=[n=1]+\frac{B_n}{n!}
i
=
0
∑
n
+
1
(
i
n
+
1
)
B
i
=
[
n
=
0
]
+
B
n
+
1
i
=
0
∑
n
(
i
n
)
B
i
=
[
n
=
1
]
+
B
n
i
=
0
∑
n
i
!
B
i
⋅
(
n
−
i
)!
1
=
[
n
=
1
]
+
n
!
B
n
记
B
B
B
的 EGF 为
B
(
x
)
B(x)
B
(
x
)
,有:
B
(
x
)
e
x
=
x
+
B
(
x
)
B
(
x
)
=
x
e
x
−
1
B(x)e^x=x+B(x)\\ B(x)=\frac x{e^x-1}
B
(
x
)
e
x
=
x
+
B
(
x
)
B
(
x
)
=
e
x
−
1
x
可以
O
(
n
log
n
)
O(n\log n)
O
(
n
lo
g
n
)
求出伯努利数。
关于其与自然数幂和的关系,有
S
m
(
n
)
=
1
m
+
1
∑
i
=
0
m
(
m
+
1
i
)
B
i
n
m
+
1
−
i
S_m(n)=\frac1{m+1}\sum_{i=0}^m\binom{m+1}iB_in^{m+1-i}
S
m
(
n
)
=
m
+
1
1
i
=
0
∑
m
(
i
m
+
1
)
B
i
n
m
+
1
−
i
证明:
设
F
n
(
x
)
=
∑
m
≥
0
S
m
(
n
)
m
!
x
m
F_n(x)=\sum_{m\ge0}\frac{S_m(n)}{m!}x^m
F
n
(
x
)
=
∑
m
≥
0
m
!
S
m
(
n
)
x
m
。
F
n
(
x
)
=
∑
m
≥
0
∑
i
=
0
n
−
1
i
m
x
m
m
!
F
n
(
x
)
=
∑
i
=
0
n
−
1
e
i
x
F
n
(
x
)
=
e
n
x
−
1
e
x
−
1
F
n
(
x
)
=
x
e
x
−
1
⋅
e
n
x
−
1
x
F
n
(
x
)
=
B
(
x
)
∑
i
≥
1
n
i
x
i
−
1
i
!
F
n
(
x
)
=
(
∑
i
≥
0
B
i
x
i
i
!
)
(
∑
i
≥
0
n
i
+
1
x
i
(
i
+
1
)
!
)
S
m
(
n
)
=
m
!
[
x
m
]
F
n
(
x
)
S
m
(
n
)
=
m
!
∑
i
=
0
m
B
i
i
!
⋅
n
m
−
i
+
1
(
m
−
i
+
1
)
!
S
m
(
n
)
=
1
m
+
1
∑
i
=
0
m
(
m
+
1
i
)
B
i
n
m
−
i
+
1
F_n(x)=\sum_{m\ge0}\sum_{i=0}^{n-1}\frac{i^mx^m}{m!}\\ F_n(x)=\sum_{i=0}^{n-1}e^{ix}\\ F_n(x)=\frac{e^{nx}-1}{e^x-1}\\ F_n(x)=\frac x{e^x-1}\cdot\frac{e^{nx}-1}x\\ F_n(x)=B(x)\sum_{i\ge1}\frac{n^ix^{i-1}}{i!}\\ F_n(x)=(\sum_{i\ge0}\frac{B_ix^i}{i!})(\sum_{i\ge0}\frac{n^{i+1}x^i}{(i+1)!})\\ S_m(n)=m![x^m]F_n(x)\\ S_m(n)=m!\sum_{i=0}^m\frac{B_i}{i!}\cdot\frac{n^{m-i+1}}{(m-i+1)!}\\ S_m(n)=\frac1{m+1}\sum_{i=0}^m\binom{m+1}iB_in^{m-i+1}
F
n
(
x
)
=
m
≥
0
∑
i
=
0
∑
n
−
1
m
!
i
m
x
m
F
n
(
x
)
=
i
=
0
∑
n
−
1
e
i
x
F
n
(
x
)
=
e
x
−
1
e
n
x
−
1
F
n
(
x
)
=
e
x
−
1
x
⋅
x
e
n
x
−
1
F
n
(
x
)
=
B
(
x
)
i
≥
1
∑
i
!
n
i
x
i
−
1
F
n
(
x
)
=
(
i
≥
0
∑
i
!
B
i
x
i
)
(
i
≥
0
∑
(
i
+
1
)!
n
i
+
1
x
i
)
S
m
(
n
)
=
m
!
[
x
m
]
F
n
(
x
)
S
m
(
n
)
=
m
!
i
=
0
∑
m
i
!
B
i
⋅
(
m
−
i
+
1
)!
n
m
−
i
+
1
S
m
(
n
)
=
m
+
1
1
i
=
0
∑
m
(
i
m
+
1
)
B
i
n
m
−
i
+
1
相关推荐
评论
共 0 条评论,欢迎与作者交流。
最新优先
最早优先
搜索
正在加载评论...