专栏文章
题解:P13275 [NOI2025] 集合
P13275题解参与者 1已保存评论 1
文章操作
快速查看文章及其快照的属性,并进行相关操作。
- 当前评论
- 1 条
- 当前快照
- 1 份
- 快照标识符
- @miout4dx
- 此快照首次捕获于
- 2025/12/03 01:30 3 个月前
- 此快照最后确认于
- 2025/12/03 01:30 3 个月前
场上约 1h 通过此题,退役之战的高光时刻。一直训练的计数水平确实在这题上表现出来了,只可惜这 day 2 没有给我乘胜追击的机会,翻盘失败。
考虑枚举 ,计算 的方案数。直观的想法是进行容斥:枚举集合 ,钦定 中所有在 中的位为 , 中所有在 中的位为 。
这样一个 对 的贡献系数为 。 的方案数容易计算:考虑所有的 ,如果 同时是 的超集,那么方案数为 ;如果是 其中一个的超集,方案数为 ;否则方案数为 。把所有 的方案数乘起来即可。
这样已经可以做到 了。
优化的想法很自然:考虑交换枚举顺序,先枚举 ,这时候可能产生贡献的 必须是 的子集。现在和 有关的只有容斥系数,这个数只和 有关。
求 的方案数可以通过研究性质 B 想到一个方法:记 表示 所有超集的 的乘积, 表示 所有超集的 的乘积。显然权值为 。因此容易优化到 。进一步地,,因此容易用 or - FWT 优化至 。
最后需要考虑一下 如何处理。考虑扩域,对每个值记录二元组 表示乘上了 个 ,显然对于每个 只有最小的 有效。容易发现 FWT 可以进行,因为具有可加性。而 IFWT 需要减法,看似会出现问题,但是实际上容易分析出正确性,因为如果 减 时,一定有 ,且 时不产生贡献。因此正确性得证,问题在 时间复杂度内完美解决。
复现的代码:
CPP#include <bits/stdc++.h>
using ll = long long;
using ld = long double;
using ull = unsigned long long;
using namespace std;
template <class T>
using Ve = vector<T>;
#define ALL(v) (v).begin(), (v).end()
#define pii pair<ll, ll>
#define rep(i, a, b) for(ll i = (a); i <= (b); ++i)
#define per(i, a, b) for(ll i = (a); i >= (b); --i)
#define pb push_back
bool Mbe;
ll read() {
ll x = 0, f = 1; char ch = getchar();
while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar();
return x * f;
}
void write(ll x) {
if(x < 0) putchar('-'), x = -x;
if(x > 9) write(x / 10);
putchar(x % 10 + '0');
}
const ll Mod = 998244353;
ll n, a[(1 << 20) + 9];
ll pw(ll x, ll p) {
ll res = 1;
while(p) {
if(p & 1) res = res * x % Mod;
x = x * x % Mod, p >>= 1;
}
return res;
}
ll Add(ll x, ll y) {
return ((x += y) >= Mod) ? (x - Mod) : (x);
}
ll Sub(ll x, ll y) {
return ((x -= y) < 0) ? (x + Mod) : (x);
}
pii operator + (const pii &a, const pii &b) {
if(a.first ^ b.first) return min(a, b);
return {a.first, Add(a.second, b.second)};
}
pii operator - (const pii &a, const pii &b) {
if(a.first ^ b.first) return a;
return {a.first, Sub(a.second, b.second)};
}
pii operator * (const pii &a, const pii &b) {
return {a.first + b.first, a.second * b.second % Mod};
}
pii f[(1 << 20) + 5], g[(1 << 20) + 5];
ll pw2[25], ipw2[25];
void FWT(pii *f) {
for(ll i = 1; i < (1 << n); i <<= 1) {
for(ll j = 0; j < (1 << n); j += (i << 1)) {
rep(k, 0, i - 1) f[j + k + i] = f[j + k + i] + f[j + k];
}
}
}
void IFWT(pii *f) {
for(ll i = 1; i < (1 << n); i <<= 1) {
for(ll j = 0; j < (1 << n); j += (i << 1)) {
rep(k, 0, i - 1) f[j + k + i] = f[j + k + i] - f[j + k];
}
}
}
ll pc(ll n) {
return __builtin_popcount(n);
}
void solve() {
n = read();
rep(i, 0, (1 << n) - 1) a[i] = read();
rep(i, 0, (1 << n) - 1) {
if(a[i] != Mod - 1) {
f[i] = {0, (1 + a[i]) % Mod};
g[i] = {0, (1 + a[i] + a[i]) % Mod * pw((1 + a[i]) * (1 + a[i]) % Mod, Mod - 2) % Mod};
}
else {
f[i] = {1, 1};
g[i] = {2, Mod - 1};
}
}
for(ll i = 1; i < (1 << n); i <<= 1) {
for(ll j = 0; j < (1 << n); j += (i << 1)) {
rep(k, 0, i - 1) {
f[j + k] = f[j + k] * f[j + k + i];
g[j + k] = g[j + k] * g[j + k + i];
}
}
}
rep(i, 0, (1 << n) - 1) {
if(pc(i) & 1) f[i].second = Mod - f[i].second;
f[i].second = f[i].second * pw2[pc(i)] % Mod;
}
FWT(f);
rep(i, 0, (1 << n) - 1) f[i] = f[i] * f[i];
IFWT(f);
ll ans = 0;
rep(i, 0, (1 << n) - 1) {
if(f[i].first ^ g[i].first) continue;
ans = (ans + f[i].second * g[i].second % Mod * ipw2[pc(i)]) % Mod;
}
write(ans), putchar('\n');
}
bool Med;
int main() {
cerr << fabs(&Med - &Mbe) / 1048576.0 << "MB\n";
ll T = read(); T = read();
pw2[0] = 1;
rep(i, 1, 22) pw2[i] = pw2[i - 1] * 2 % Mod;
rep(i, 0, 22) ipw2[i] = pw(pw2[i], Mod - 2);
while(T--) solve();
cerr << "\n" << clock() * 1.0 / CLOCKS_PER_SEC * 1000 << "ms\n";
return 0;
}
相关推荐
评论
共 1 条评论,欢迎与作者交流。
正在加载评论...